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Abstract-- Linear bifurcation stability of laminated anisotropic circular cylinders is investigated on
the basis of three-dimensional elasticity using Biot's incremental deformation theory. A finite
element code employing radial discretization is formulated for the calculations_ By this approach,
the laminate's thickness profile may be composed of an arbitrary number of bonded elastic aniso
tropic layers, each of which may have its own mechanical properties, thickness and initial stress
state. Using a solution that is periodic axially and circumferentially in the variationally derived
equilibrium equations yields an algebraic eigenvalue problem, where the critical (lowest) eigenvalue
is sought. It represents the ratio of the buckling stress state to initial stress state and its associated
eigenvector contains the radial distribution of the displacements_ A parametric study on a series of
regular symmetric and antisymmetric cross-ply and angle-ply laminated composite cylinders under
axial compression and torsion was cond ucted, where the data can be used to assess the accuracy
and range of validity of stability predictions based on shell theories. An example of the axial
compression of a thick-walled laminated composite cylinder is presented to illustrate an instability
phenomenon where internal and surface deformations are present.

INTRODUCTION

A circular cvlindrical tube fabricated of laminated composite material(s) represents a
structural shape enjoying wide applications in many industries. One concern in the design
ofcircular cylinders, particularly when they are thin-walled, is the loss of structural stability.
This paper deals with a linear elastic stability analysis of laminated composite circular
cylinders using Biot's incremental deformation theory (1965). The proposed technique,
based on finite elements, can be applied to arbitrary laminate profiles of anisotropic
materials. Biot's theory rests on linear three-dimensional elasticity and uses linearized
deformational measures about a self-equilibrated initially stressed state to describe the
subsequent response due to incremental loading. Applying Biot's theory to linear stability
problems leads to results pertaining to bifurcation buckling. By a three-dimensional for
mulation, it is also possible to predict internal buckling, an instability mode where defor
mations occur primarily within the body. Delamination may be a consequence of internal
buckling, to which cylinders with low radius/thickness ratios and low transverse normal
stiffness are more susceptible.

The semi-analytical finite element technique presented herein is based on the modeling
of the radial dependence of the behavior in the cylinder by polynomials in the discretized
cylindrical laminae. Each lamina is capable of representing distinct local elastic, anisotropic
properties as well as the stress components comprising the arbitrary self-equilibrated initial
state. Quadratic polynomials are used in the radial direction, with nodal degrees of freedom
at the lamina's two bounding surfaces and its mid-point. At these nodes, the axial and
circumferential dependencies are left unspecified at the outset. This radial discretization
procedure was used by Bradford and Dong (1978) for studying vibrations of initially
stressed laminated orthotropic (or general cross-ply) cylinders, and the present finite element
code extends the capability to treat completely anisotropic materials. Also, the present
code is based on isoparametric methodology and numerical integration, instead of the
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algebraically more cumbersome exact integration of Bradford and Dong (1978). The gov
erning partial differential equations of equilibrium are obtained by varying the total
incremental potential energy including contributions due to initial stress. They are in terms
of the nodal displacements as functions of the axial and circumferential coordinate variables.
Upon invoking the axial and circumferential dependencies in the solution form for the
buckled shape, the set of governing equations is transformed into an algebraic eigenvalue
problem. The lowest eigenvalue represents the ratio of the critical (i.e. bifurcation) stress
level to the reference or self-equilibrated initial stress state. The corresponding eigenvector
depicts the radial pattern of displacements of the buckled shape.

A parametric study is presented for axial compression and torsion loading conditions
of regular cross-ply and angle-ply cylinders. The parameters of interest include the numbers
of plies in the laminate profiles, cross-ply and angle-ply layups, and thickness/radius ratios
simulating both thin and thick shell geometries. The numerical results are summarized in
graphical form, showing the lowest bifurcation load as functions of the length/radius ratio
and circumferential mode numbers. One case ofa laminated composite thick-walled cylinder
under axial compression is considered to show some aspects of internal buckling.

In connection with the present method of stability analysis, attention is called to
Kardomateas (1993a, b) who studied the linear buckling of homogeneous, orthotropic
circular cylinders on the basis of three-dimensional elasticity. His governing stability equa
tions are essentially identical to those of Biot's theory, although the points of departure in
the derivations differ somewhat. Kardomateas investigated linear bifurcation buckling for
axial compression and pressurization loading conditions analytically, the latter under plane
strain deformation. While his method can be extended to treat layered cylinders, the
potentially inordinate algebraic details will undoubtedly be an inhibiting factor limiting the
extent of numerical results. The present finite element method, while incapable of tracking
behavioral inter-relations analytically, does permit completely arbitrary laminate profiles
of distinct anisotropic materials to be treated in a straightforward way.

As three-dimensional elasticity data may be regarded as exact for all radius/thickness
ratios, they can serve as the basis for comparing the accuracy and range of application of
classical and refined shell theories. In contrast to homogeneous, isotropic materials, the
classical shell theory for laminated fiber composites suffers from a reduced range of appli
cation because the low transverse shear and normal stiffnesses cause the behavior to depart
from the underlying kinematic hypotheses more readily. The need to account for these
two effects has prompted development of various refined theories, where the behavioral
differences between them are rooted in the respective constitutive relations. In arguing the
viability of these theories, most authors point to the differences between their results with
those of classical theory and/or a lower order refined theory. A more convincing tactic
is by comparison with three-dimensional elasticity data. The present solution technique
generates such data with ease. In a companion paper by Etitum and Dong (1994),
a comprehensive parametric study is given to shed light on the accuracy and the
range of application of classical and first-order shear deformation theories in buckling
analyses.

Some limitations regarding the present analysis need to be mentioned.

(I) That initial imperfections in cylindrical shells playa very dominant role in limiting
the maximum load carrying capacity has not escaped the attention of the authors.
The voluminous literature cited by Hutchinson and Koiter (1970) primarily on
homogeneous, isotropic cylinders and by Simitses (1986) on laminated composite
cylinders certainly underscores this point. But, imperfection sensitivity is not taken
up herein, with the plea that issues related to the parameters governing bifurcation
instability are sufficient to fully occupy a meaningful discussion.

(2) Geometrically nonlinear prebuckled deformations are ignored. Only linear bifur
cation is treated based on a given initial stress state whose load path arriving at
this state is deemed to be of no consequence to the buckling results. Although it is
possible to account for a geometrically nonlinear prebuckled state, the com
putational effort would be greater and beyond the current scope.
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(3) The initial stress states used in the buckling analysis herein are simple two-dimen
sional (generalized plane stress) states, reminiscent of the stress resultants assumed
in shell and plate theory calculations. This approach suits the purpose of this paper
for providing equivalent comparison data. However, the method accommodates
a general three-dimensional stress state, which may be, for example, the results of
extension/torsion of a laminated circular cylinder (i.e. the Saint-Venant problem)
and of internal and external pressurization. At present, this capability is not readily
available. Nevertheless, the need for an accurate three-dimensional stress state is
relevant and must be emphasized, especially in internal buckling phenomenon,
whose behavior is intricately three-dimensional and complex.

These caveats are important issues and deserve appropriate attention in order for a full
understanding of the stability behavior of laminated anisotropic cylinders. The method
herein represents a stepping stone toward this goal.

BASIC EQUAnONS

Let cylindrical coordinates (r, e, xt) be adopted. The mechanical variables of the
problem are the three displacements ui(r, e, x), six stress and strain components (Jij(r, e, x)
and EuCr, e, x), and three infinitesimal rigid body rotations wier, e, x). These variables
describe an incremental deformed state with respect to a reference equilibrium state whose
stress components are denoted by Sij(r, e, x). The components of these variables are listed
in the following arrays:

U = [ur Uo ux]T (1)

(J = [(Jrr (J 00 (Jxx (Jox (Jrx (J re]T (2)

8 = [Err Eoo cxx YOx frx YrO]T (3)

Gm = [err Eoo exx Eox er.y ErO Wr We wx]T (4)

(1s = [Srr Soo S" Sox Srx SrO]T. (5)

Observe that 8w contains both rigid body rotations W h and tensorial strain components
Eij = ·yj2 (i ¥- j). This particular form will facilitate the finite element development. Note
that the loading history leading to the reference equilibrium state is assumed to have no
bearing on the subsequent incremental elastic deformation. Only the magnitude of this
stress state plays a role.

The strain-displacement relations for the components in E and Ew are written in terms
of three differential operators, each involving differentiation of an independent spatial
coordinate:

where the operators (Lrl , L 01 ' L d ) and (Lr2 , L 02' L x2 ) are given in the Appendix.
The incremental stress-strain relation is given by

(1 = Cs

(6)

(7)

where C is a (6 x 6) matrix of cylindrically anisotropic elastic moduli. In the variational
principle to be stated, the six initial stress components Slj participate in a (9 x 9) matrix S
of the form

tThe variable x is used for the axial coordinate rather than z for circular cylindrical coordinates to be in
keeping with cylindrical shell theory notation.
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The theorem of minimum potential energy in the form

(9)

provides the displacement equations of equilibrium and boundary conditions where
~VI. ~ V2 and ~Ve are the incremental energies of strain, initial stress and applied incremen
tal tractions given by

(10)

(11)

(12)

where ~f is the array of surface traction components and u, denotes the displacement
components along directions corresponding to the applied tractions.

SEMI-ANALYTICAL FINITE ELEMENTS

In this version of the finite element method, the radial profile of the cylinder is
discretized into cylindrical laminae. Within each lamina, the radial dependence of the
displacement field is modeled by quadratic polynomials using three nodes, two at the
bounding surfaces and one at the mid-point of the lamina (see Fig. 1). These nodal degrees
of freedom are undetermined functions of (8, x). The interpolation field within a lamina is
given by

u,(r,8,x) = nu, = [n l (';)n2(';)n,CO]u,(8,x)

uo(r,8,x) = nu f) = [n1COn2(';)n,(';)]uo(8,x)

u,(r, 8, x) = nu, = [n l (On 2 (';)n, CO]u,(8, x)

where the interpolation functions nis in local coordinate'; are

(13)

and the arrays Un Uo, u, contain the respective nodal displacement components. Iso
parametric finite element methodology is followed using numerical integration, the details
of which are standard and need no elaboration [see, for example, Zienkiewicz (1978)]. This
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Shaded Area Indlell1es Single lamina

Three Nodes In a Lamina

Coordinate System

Note: ff' Ply Angle is parallel to the x-axis.

Fig. I. Nodes of laminae.

separation of the dependent variables with one part of the decomposition explicitly stated
is an approach situated intermediate of an exact solution and the RitzjGalerkin methods.
This general approach is attributed to Kantorovich and Krylov (1958) and is known as the
semi-analytical technique in finite element nomenclature.

To facilitate the discussion, assemble the element displacement interpolations into one
over the total thickness of the cylinder:

[

uT(r, e, X)]
u.o(r,. e, x)
u,(r, e, x)

or in abbreviated matrix form

N(r) :]

N(r)

(15)

u=NV, (l5a)

where N(r) contain the assembled finite element interpolations and V(e, x) represents the
ordered set of nodal displacements over the entire thickness profile. Substitution of eqn
(15) into eqn (6) gives

where strain-transformation matrices (Bd , BOI , Bd ) and (BT2 , B02 , B'2) are defined in the
Appendix. Substituting eqns (15)-(17) into eqns (10)-(12) gives
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+ V:eBJI CBr]V + V:eBJl CBe, U. e+ V:eBJl CBx1 V. x

+ V\B;) CBrI V + U:xB;1 CBe]V. e+ V:xB;ICBd V,x) rdrdOdx (18)

+ V:eBJzSBrzV +V:eBJzSBezV.e +VJBJzSBxzV,x

+ V:,B;zSBrz U+V:xB;zSBezV,e + V:,B;zSBxzV,J rdrdOdx (19)

Carrying out the variation indicated by eqn (9) gives

K] V +KzU,e+K3V,x-K4V,ee-KsV,ox-K6V,xx

+Kg)V+KgzV.e+Kg3V,x-Kg4V.eo-KgsV,ex-Kg6V,xx = LlF(O,x) (21)

where

K) = 1B;jCBrlrdr, Kz = 1(B;) CBe) -BJI CBrd rdr

K4 = 1BJ, CBe]rdr, K3 = 1(B;I CBd -B;I CBrI ) rdr

K6 = 1B;) CBdrdr, Ks = 1(BJ) CBd +B;1 CBe1 )rdr

Kg] =1B;z SBrzrdr, Kgz =1(B;z SBoz -BJz SBrz)rdr

Kg4 =1BJ2 SBezrdr, Kg3 = 1(B;z SBxz -B;2 SBrz)rdr

Kg6 = 1B;z SBx2 rdr, Kgs = 1(BJz SBxz +B;z SBez)rdr

(22)

(23)

(24)

Equation (21) is the governing displacement equation of equilibrium that can be used to
determine the incremental deformation due to the incremental applied load LlF. Note that
K], K4, Ks, K6, Kg), Kg4 , Kgs , Kg6 are symmetric while Kz, K3, Kg2 , Kg3 are antisymmetric.

LINEAR STABILITY ANALYSIS

For a linear elastic stability problem, suppress LlF in eqn (21). Introduce the parameter
A for denoting the ratio of the critical initial stress state to the given initial stress state, i.e.
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1\ = O"init(cnt)/O"init,

and take the analytical form of the buckled shape as

U(8, x) = U
o

e(kx-nO)
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(25)

(26)

where (k, n) are axial and circumferential wave numbers and Uo is the array of nodal
displacements over the thickness. This solution form assumes periodic boundary conditions
along the generator of the cylinder with repeating fields over a buckled wave length L,
where L = 2nlk. More will be said on the nature of the boundary conditions inherent in
representation (26) in the next section. Substituting solution form (26) in the homogeneous
form of eqn (21) and using the parameter A lead to the following algebraic eigensystem
with complex matrices

(27)

where

(28)

(29)

In eqn (27), note that the complex form is Hermitian by virtue of the symmetric real and
antisymmetric imaginary components as shown in eqns (28) and (29). Therefore, only real
eigenvalues are contained in the system. Eigenvalue problem (27) can be rendered purely
real by doubling its size as follows:

-Kql
] { U o

}
K

qR
-iU" = o. (30)

The symmetry of all matrices is easily observed in eqn (30). Solution of eqn (30) provides
the critical value of A representing the bifurcation buckling load ratio. Its associated
eigenvector depicts the radial displacement of the buckled shape. Only the lowest eigenvalue
is of physical importance and herein it is extracted by subspace iteration using a subset of
displacements based on applied loads as the starting vectors [see Dong et at. (1972) ; Dong
and Wolf (1970)].

NATURE OF PERIODIC BOUNDARY CONDITIONS

To understand the periodic nature of solution form (26), consider Uo as complex, i.e.
U" = UoR + iUol and expand the exponential function into trigonometric functions as

U(x, 8) = UoR cos(kx+nO) - Uol sin (kx+n8) +i (UaR sin (kx+n8) + Uol cos (kx+n8)).

(31)

In this form, the periodic roles of both the real and imaginary parts of Uo are clearly seen.
For a generally cross-ply cylinder, periodic solutions portray simply supported con

ditions (i.e. mixed conditions). Its manifestation in eigensystem (30) takes the form of
two identical, decoupled subsets of matrices with repeated eigendata. Each displacement
eigenvector in the repeated pair bears a phase difference of nl2 with the other.

For a completely anisotropic cylinder, there are also repeated eigendata pairs.
However, there is no meaningful analogue to simple supports as the displacement eigen
vector is complex. The only description of periodicity is that the solution repeats itself
over intervals of length L.
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Table 1.

Figure numbers for

Laminate profile
---------.----

Axial
compression Torsion

Symmetric cross-ply
Antisymmetric cross-ply
Antisymmetric cross-ply
Symmetric angle-ply
Antisymmetric angle-ply
Symmetric angle-ply
Antisymmetric angle-ply

[0,90,0, ... ,90,0]
[0,90, _ .. ,0,90]
[90,0,. .. ,90,0]

[+45, -45, ... ,-45, +45]
[+45,-45, _ . ,+45,-45]
[+30,-30, .. ,-30,+30]
[+30, - 30, .. , +30, - 30]

2
3(a)
3(b)
4(a)
4(b)
5(a)
5(b)

8
9(a)
9(b)

10(a)
lO(b)
II (a)
II (b)

To treat general boundary conditions using Biot's theory, a two-dimensional (axi
symmetric) finite element code is needed where interpolations occur over a meridional
plane. Then, general boundary conditions can be enforced at the ends of the finite length
cylinder. Such a code has been developed [see Pham (1989)], but no recourse is made to it
since the required computational labor is one order of magnitude more intensive. Since
comparisons of the present results with classical and first-order shear deformation theories
in a companion paper by Etitum and Dong (1994) are under commensurable conditions,
solution form (26) should not be overly restrictive in studying a wide range of parameters
that influence bifurcation buckling.

PARAMETRIC STUDY ON CYLINDRICAL SHELLS

In this section, the results of a parametric study of cylindrical shell stability under
axial compression and torsion are presented. Three regular symmetric and four regular
antisymmetric types of laminate profiles were considered and they are summarized in Table
I. A regular laminate refers to a layup where all plies have the same thickness and same
mechanical properties, and symmetric and antisymmetric profiles pertain to the total num
ber of plies being odd and even, respectively. In this study, only one material system was
considered, that being a transversely isotropic material with properties

CTT
E

T
= 0.4, VLT = 0.25, VTT = 0.25. (32)

In this study, the number of plies for symmetric laminates ranged from three to nine, and
that for antisymmetric laminates from two to eight. The total laminate thickness is denoted
by H.

Two geometric parameters were considered. One is the buckled wave length in the
form of the ratio (L/a), where a is the mean radius of the cylinder. This parameter ranged
from 0.1 to 250. The other is the thickness ratio (H/a) and two cases were considered;
H/a = 0.01 representing a thin shell geometry and H/a = 0.1 for a thick shell geometry. All
stability results are presented in graphical form of the critical (lowest) dimensionless stress
versus L/a. The circumferential mode number n associated with the critical stress is indi
cated.

To refresh our understanding of buckling for different laminate profiles, it is useful to
recall certain behavioral features of regular symmetric and antisymmetric laminates as
predicted by lamination theory.t For symmetric laminates, the middle surface is a structural
symmetry plane so that all Bus are absent. Consequently, there is no extensional/bending
coupling. For regular antisymmetric laminates, extensional/bending coupling occurs in the
following ways. For cross-ply laminates, only coefficients B II and Bn exist with B il = - Bn .
For angle-ply laminates, only coefficients B l6 and B26 are present. These coefficients go to
zero with increasing numbers of pairs of plies. Extensional/bending coupling generally

tThe reader may wish to refer to a text devoted to lamination theory, such as Tsai and Hahn (1980).
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Fig. 2. Axial buckling of regular symmetric cross-ply cylinders.

degrades the flexural stiffness, manifesting in lower buckling loads if substantial bending is
involved. Thus, the lowest buckling loads occur in two layer profiles because the Bus are
the largest in magnitude. This pattern should be seen in the present results.

Axial compression
The axial strain is assumed to be uniform over the cylinder's cross-section under axial

compression and the axial stress is proportional to the axial stiffness. Hence, for angle-ply
laminates, the stress distribution is uniform over the cross-section. However, for cross-ply
laminates composed of materials with properties given by eqn (32), (J"~~ = 25(J"~x'

The dimensionless buckling stress for axial compression is given by N w / ETH, where
N x denotes the axial force per unit circumferential distance around the mid-surface of the
cylinder. Plots of the critical (lowest) dimensionless axial stress as a function of Lja for the
seven laminate cases are given in Figs 2- 5 (refer to Table 1 for description of the laminate
profiles). Some observations of these results are presented below.

For the symmetric cross-ply laminates, even though there is no extensional/bending
coupling, the data in Fig. 2 for the thin shell geometry show a significantly lower critical
stress for the three layer profiles in comparison to the other layups over a significant range
of L/a. This pattern shows a dramatic contrast with data for symmetric (±45) and (± 30)
laminates in Figs 4(a) and 5(a), where the difference between the three layer profile and the
others is much less.

In all antisymmetric laminates, the characteristic of the two layer profile being tied to
a significantly lower critical stress in comparison to the other layups is seen repeatedly, i.c.
in the (on/90'), (90 /0), (± 45) and ( ± 30) data in Figs 3(a,b), 4(b), and 5(b). respectively.
There appears to be little difference in the buckling data between the (0'/90) and (9010 )
cross-ply laminates as shown in Figs 3(a) and 3(b).

Further understanding of axial compression behavior can be gained by examining the
buckled displacement patterns. If the Kirchhoff-Love kinematic hypothesis of classical
theory is operative, then the axial and tangential displacements must be linear over the
thickness and the radial displacement constant throughout. Plots of normalized dis
placements for a two-layer regular antisymmetric (±300) laminate for H/a = 0.01 are
shown in Fig. 6. The patterns for Lla = 5 and 100 abide by the Kirchhoff-Love hypothesis.
But for L/a = 0.2, a short wavelength, the radial displacement pattern indicates the presence
of transverse normal strain. Displacement plots for the same laminate profile for H/a = 0.1
are shown in Fig. 7. For this thick shell geometry, much greater transverse shear and
normal strains can be observed for Lja = 0.2. Even for Lla = 5, the radial displacement
wavers somewhat, suggesting the presence of some transverse normal deformation. The
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(a) 0/90 Antlsymmetrlc laminates (b) 90/0 Antlsymmetrlc laminates
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Fig. 3. Axial buckling of regular antisymmetric cross-ply cylinders.

(a) Symmetric laminates (b) Antlsymmetrlc laminates
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Fig. 4. Axial buckling of regular symmetric and antisymmetric (± 45G
) cylinders.

accuracy of shell theory data is discussed in a companion paper by Etitum and Dong
(1994).

Torsion
For torsion, the initial shear strain varies linearly from the central axis. Since the in

plane shear moduli of all ply materials are identical, all laminates are effectively homo
geneous in torsion, so that the stress distribution is linear through the thickness in all cases.
The lowest critical dimensionless shear stress is denoted by N xocr/ ETH, where N xo is the
shear force per unit circumferential distance around the mid-surface of the cylinder. Plots
of torsional stability data for the same laminate profiles that were considered in axial
compression are shown in Figs 8-11.
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(s) Symmetric laminates (b) Antlsymmetrlc laminates
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Fig. 5. Axial buckling of regular symmetric and antisymmetric (± 30°) cylinders.

By and large, trends similar to axial compression are evinced in torsional buckling.
The direct correspondence of axial and shear stiffnesses to their buckling strengths can be
seen by observing the difference between (± 30°) and (± 45°) laminates. For axial buckling,
the (± 30°) laminates possessed higher critical stress as seen upon comparison of Figs 4
and 5, i.e. axial stiffness is higher in the (± 30°) than the (±45°) orientation. For torsional
stability, a greater buckling strength was evident in the (±45°) laminates, i.e. maximum
shear stiffness occurs at ±45° orientations. No displacement plots are given for torsional
buckling, as these data are not dramatically different from axial compression.

For large L/a, the circumferential mode number associated with the critical stress is
n = 1. It is well known from studies based on shell theory that this mode is precluded if
adjacent cross-sections between a given wavelength are restrained kinematically. The data

,; herein are meaningful to the extent that the same periodic displacement field is employed
in all cases.

THICK-WALLED CYLINDER

To illustrate the stability of a thick-walled cylinder, consider regular symmetric and
antisymmetric (± 30°) laminated cylinders, all with thickness ratio of H/a = I. The mech
anical properties for the plies comprising these cylinders are those given by eqn (32). Again,
the number of plies varied from three to nine for the symmetric profiles and two to
eight for the antisymmetric profiles. The loading condition consisted of a uniform axial
compressive strain over the entire cross-section.

Axial compression data are shown in Fig. 12, where the dimensionless axial stress
(jucr/ET is plotted against L/a for both symmetric and antisymmetric profiles. The data
indicate that symmetric laminate profiles buckled at circumferential mode number n = 0
throughout the low to intermediate ranges of L/a, while antisymmetric laminate profiles
buckled at high circumferential mode numbers. With an increasing L/a ratio, the cir
cumferential mode number n decreased. For both cases in the range of L/a, large column
instability is evident with n = I. Also note that the buckling strengths of the two layer
antisymmetric and three layer symmetric laminates in column instability regime are lower
than those for laminate profiles of more plies. This behavior agrees with lamination theory,
which shows that for a given laminate thickness, the flexural rigidity increases with the total
number of plies.
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Plots of displacement profiles over the laminate thickness for the three layer symmetric
and two layer anti symmetric laminate profiles are shown in Figs 13 and 14, respectively. It
can be seen that for both laminates, the behavior for L/a = 100 is that of column buckling,
where the in-plane components are linear over the thickness and the radial component is
constant throughout. The plots of the displacement fields for L/a = 2 and 0.5 show con
siderable transverse shear and normal deformations. Furthermore, for L/a = 0.5, the dis
placements are confined to a neighborhood near the outer surface, i.e. surface displacements
where, with respect to a short buckling wave length, the total thickness resembles a half
space.

CONCLUDING REMARKS

A finite element method of analysis was presented for stability of circular cylindrical
shells. The method is based on Bioi's three-dimensional theory of incremental deformation.
In this method, the discretization takes place in the thickness direction, where one-dimen
sional quadratic interpolations are used to represent the radial behavior of the three
displacement components. For stability, an algebraic eigenvalue problem is generated,
where the eigenvalues and eigenvectors represent the ratio of the critical stress state to the
initial state and the corresponding displacement distribution over the thickness. Only the
lowest (or critical) eigenvalue/eigenvector is of physical interest.

A parametric study of two geometries of cylindrical shells was carried out, i.e.
H/a = 0.01 and 0.1 representing thin and thick shells, respectively. For these two thickness
to radius ratios, number of plies, stacking sequence and fiber orientation were varied. From
this study certain conclusions can be drawn regarding the ranges of validity of various shell
theories, i.e. classical or refined.

An example of stability ofa thick-walled cylinder was presented. The three-dimensional
theory revealed that for long axial wavelengths, column stability behavior was in evidence.
But for short axial wavelengths, the phenomenon involved surface instabilities, where the
displacements occurred mainly in the region ofthe outer surface of the thick-walled cylinder.
However, it should be remembered that for real materials, material yielding may occur
before a full evolution of surface instability.
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APPENDIX

The operators in eqn (6) and strain-transformation matrices in eqns (16) and (17) are given by

a/or

l/r

I
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I'

o/(lr-l/r

0/00

a/or

a/ao

N,

N/r

l

I
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N

N
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(Alb,h)

%x N
L" = By1 = (Alc,i)

iJ/ox N
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I
L" = a/2Cr B" =2, N., (Ald,j)
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